An inequality for rational functions
نویسندگان
چکیده
منابع مشابه
A Comparison Inequality for Rational Functions
We establish a new inequality for rational functions and show that it implies many inequalities for polynomials and their polar derivatives.
متن کاملWeighted Turán Type Inequality for Rational Functions with Prescribed Poles
Firstly, we introduce a new type of weight functions named as N-doubling weights, which is an essential generalization of the well known doubling weights. Secondly, we establish a weighted Turán type inequality with N-doubling weights and a Nikolskii-Turán type inequality for rational functions with prescribed poles. Our results generalize some known Turán type inequality both for polynomials a...
متن کاملAn Inequality for Adjoint Rational Surfaces
We generalize an inequality for convex lattice polygons – aka toric surfaces – to general rational surfaces. Our collaboration started when the second author proved an inequality for algebraic surfaces which, when translated via the toric dictionary into discrete geometry, yields an old inequality by Scott [5] for lattice polygons. In a previous article [2], we were then able to refine this est...
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملAn Inequality for Macaulay Functions
Given integers k ≥ 1 and n ≥ 0, there is a unique way of writing n as n =
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1970
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1970-0252609-7